Climate Change and the Global Expansion of Dengue Fever: Epidemiological Trends and Public Health Challenges

Authors

  • Budiman Institut Teknologi Kesehatan dan Bisnis Graha Ananda

DOI:

https://doi.org/10.61194/jrkpk.v1i2.658

Keywords:

Dengue Fever, Climate Change, Aedes aegypti, Vector-borne Diseases, Epidemiology, Global Warming, Environmental Health

Abstract

Climate change has significantly influenced the transmission dynamics of dengue fever, particularly through rising temperatures, increased precipitation variability, and higher humidity levels. This study systematically examines the relationship between climate variability and dengue epidemiology, highlighting the expansion of Aedes aegypti vectors into previously non-endemic regions. A systematic literature review was conducted using PubMed, Scopus, and Google Scholar to analyze peer-reviewed studies published in the past decade. Key findings indicate that higher temperatures accelerate mosquito development and viral replication, leading to a shorter extrinsic incubation period. Additionally, fluctuating rainfall patterns create optimal breeding conditions, increasing the density of mosquito populations and dengue incidence rates. The results underscore the necessity for climate-adaptive public health policies, improved urban planning, and proactive vector control measures to curb disease transmission. Climate-based early warning systems, environmental management strategies, and interdisciplinary research integrating climatology and epidemiology are critical in mitigating future outbreaks. Given the escalating global burden of dengue fever, urgent and sustained efforts are required to address the challenges posed by climate change and safeguard vulnerable populations against increasing health risks.

References

Adhianti, R. A. C., Kubota, T., Pradana, R. P., & Lee, H. S. (2023). The Impacts of Climatic Conditions on Dengue Fever and General Emergency Hospital Admissions in Tropical Indonesia. E3s Web of Conferences, 396, 05006. https://doi.org/10.1051/e3sconf/202339605006

Andersen, L. K., & Davis, M. D. P. (2015). The Effects of the El Niño Southern Oscillation on Skin and Skin‐related Diseases: A Message From the International Society of Dermatology Climate Change Task Force. International Journal of Dermatology, 54(12), 1343–1351. https://doi.org/10.1111/ijd.12941

Angelo, M., Ramalho, W. M., Gurgel, H., Belle, N., & Pilot, E. (2020). Dengue Surveillance System in Brazil: A Qualitative Study in the Federal District. International Journal of Environmental Research and Public Health, 17(6), 2062. https://doi.org/10.3390/ijerph17062062

Attaway, D. F., Jacobsen, K. H., Falconer, A., Manca, G., & Waters, N. (2014). Assessing the Methods Needed for Improved Dengue Mapping: A SWOT Analysis. Pan African Medical Journal, 17. https://doi.org/10.11604/pamj.2014.17.289.3435

Barrio, M. O. d., Simard, F., & Caprara, A. (2018). Supporting and Strengthening Research on Urban Health Interventions for the Prevention and Control of Vector-Borne and Other Infectious Diseases of Poverty: Scoping Reviews and Research Gap Analysis. Infectious Diseases of Poverty, 7(1). https://doi.org/10.1186/s40249-018-0462-z

Bellone, R., & Failloux, A. (2020). The Role of Temperature in Shaping Mosquito-Borne Viruses Transmission. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.584846

Bianco, G., Espinoza-Chávez, R. M., Ashigbie, P. G., Junio, H., Borhani, C., Miles‐Richardson, S., & Spector, J. (2024). Projected Impact of Climate Change on Human Health in Low- And Middle-Income Countries: A Systematic Review. BMJ Global Health, 8(Suppl 3), e015550. https://doi.org/10.1136/bmjgh-2024-015550

Blagrove, M. S. C., Caminade, C., Waldmann, E., Sutton, E., Wardeh, M., & Baylis, M. (2017). Co-Occurrence of Viruses and Mosquitoes at the Vectors’ Optimal Climate Range: An Underestimated Risk to Temperate Regions? Plos Neglected Tropical Diseases, 11(6), e0005604. https://doi.org/10.1371/journal.pntd.0005604

Cheng, J., Bambrick, H., Yakob, L., Devine, G. J., Frentiu, F. D., Williams, G., Li, Z., Yang, W., & Hu, W. (2021). Extreme Weather Conditions and Dengue Outbreak in Guangdong, China: Spatial Heterogeneity Based on Climate Variability. Environmental Research, 196, 110900. https://doi.org/10.1016/j.envres.2021.110900

Colón‐González, F. J., Lake, I., & Bentham, G. (2011). Climate Variability and Dengue Fever in Warm and Humid Mexico. American Journal of Tropical Medicine and Hygiene, 84(5), 757–763. https://doi.org/10.4269/ajtmh.2011.10-0609

Cui, G., Zhong, S., Zheng, T., Li, Z., Zhang, X., Li, C., Hemming‐Schroeder, E., Zhou, G., & Li, Y. (2021). Aedes Albopictus Life Table: Environment, Food, and Age Dependence Survivorship and Reproduction in a Tropical Area. Parasites & Vectors, 14(1). https://doi.org/10.1186/s13071-021-05081-x

Dhimal, M., Ahrens, B., & Kuch, U. (2014). Species Composition, Seasonal Occurrence, Habitat Preference and Altitudinal Distribution of Malaria and Other Disease Vectors in Eastern Nepal. Parasites & Vectors, 7(1). https://doi.org/10.1186/s13071-014-0540-4

Dhimal, M., Ahrens, B., & Kuch, U. (2015). Climate Change and Spatiotemporal Distributions of Vector-Borne Diseases in Nepal – A Systematic Synthesis of Literature. Plos One, 10(6), e0129869. https://doi.org/10.1371/journal.pone.0129869

Ellis, A. M., García, A. J., Focks, D. A., Morrison, A. C., & Scott, T. W. (2011). Parameterization and Sensitivity Analysis of a Complex Simulation Model for Mosquito Population Dynamics, Dengue Transmission, and Their Control. American Journal of Tropical Medicine and Hygiene, 85(2), 257–264. https://doi.org/10.4269/ajtmh.2011.10-0516

Fareed, N., Ghaffar, A., & Malik, T. (2016). Spatio-Temporal Extension and Spatial Analyses of Dengue From Rawalpindi, Islamabad and Swat During 2010–2014. Climate, 4(2), 23. https://doi.org/10.3390/cli4020023

Fauziyah, S., Susanti, S. F., Hariyono, H., FAZIRRAH, V., NOVITASARI, A. E., Fadhilah, N., Sucipto, T. H., & Naw, S. W. (2023). Phytotelmata Accounts for Aedes Breeding Places in Mantup Sub-District, Lamongan District, Indonesia. Biodiversitas Journal of Biological Diversity, 24(9). https://doi.org/10.13057/biodiv/d240923

Fitzpatrick, C., Haines, A., Bangert, M., Farlow, A., Hemingway, J., & Velayudhan, R. (2017). An Economic Evaluation of Vector Control in the Age of a Dengue Vaccine. Plos Neglected Tropical Diseases, 11(8), e0005785. https://doi.org/10.1371/journal.pntd.0005785

Gu, H., Leung, R. K., Jing, Q., Zhang, W., Yang, Z., Lu, J., Hao, Y., & Zhang, D. (2016). Meteorological Factors for Dengue Fever Control and Prevention in South China. International Journal of Environmental Research and Public Health, 13(9), 867. https://doi.org/10.3390/ijerph13090867

Hossain, M. S., Noman, A. A., Mamun, S. M. A. A., & Mosabbir, A. A. (2023). Twenty-Two Years of Dengue Outbreaks in Bangladesh: Epidemiology, Clinical Spectrum, Serotypes, and Future Disease Risks. Tropical Medicine and Health, 51(1). https://doi.org/10.1186/s41182-023-00528-6

Johansson, M. A., Cummings, D. A. T., & Glass, G. E. (2009). Multiyear Climate Variability and Dengue—El Niño Southern Oscillation, Weather, and Dengue Incidence in Puerto Rico, Mexico, and Thailand: A Longitudinal Data Analysis. Plos Medicine, 6(11), e1000168. https://doi.org/10.1371/journal.pmed.1000168

Kamal, A. S. M. M., Al-Montakim, Md. N., Hasan, M. A., Mitu, Mst. M. P., Gazi, Md. Y., Uddin, Md. M., & Mia, Md. B. (2023). Relationship Between Urban Environmental Components and Dengue Prevalence in Dhaka City—An Approach of Spatial Analysis of Satellite Remote Sensing, Hydro-Climatic, and Census Dengue Data. International Journal of Environmental Research and Public Health, 20(5), 3858. https://doi.org/10.3390/ijerph20053858

Kamal, M., Kenawy, M., Rady, M. H., Khaled, A., & Samy, A. M. (2018). Mapping the Global Potential Distributions of Two Arboviral Vectors Aedes Aegypti and Ae. Albopictus Under Changing Climate. Plos One, 13(12), e0210122. https://doi.org/10.1371/journal.pone.0210122

Khormi, H. M., & Kumar, L. (2014). Climate Change and the Potential Global Distribution of Aedes Aegypti: Spatial Modelling Using Geographical Information System and CLIMEX. Geospatial Health, 8(2), 405. https://doi.org/10.4081/gh.2014.29

Leowattana, W., & Leowattana, T. (2021). Dengue Hemorrhagic Fever and the Liver. World Journal of Hepatology, 13(12), 1968–1976. https://doi.org/10.4254/wjh.v13.i12.1968

Li, H., Li, S., Yang, H., Zhang, Y., Ma, Y., Hou, Y., Zhang, X., Sun, L., Borné, Y., & Wang, Y. (2023). Association of Ultra‐Processed Food Intake With Cardiovascular and Respiratory Disease Multimorbidity: A Prospective Cohort Study. Molecular Nutrition & Food Research, 67(11). https://doi.org/10.1002/mnfr.202200628

Li, X., Shek, D. T. L., & Shek, E. Y. W. (2021). Offline Victimization, Psychological Morbidity, and Problematic Online Behavior Among Chinese Secondary School Students. International Journal of Environmental Research and Public Health, 18(18), 9462. https://doi.org/10.3390/ijerph18189462

Liu, T., & Xiao, X. (2021). A Framework of AI-Based Approaches to Improving eHealth Literacy and Combating Infodemic. Frontiers in Public Health, 9. https://doi.org/10.3389/fpubh.2021.755808

Liu-Helmersson, J., Quam, M., Wilder‐Smith, A., Stenlund, H., Ebi, K. L., Massad, E., & Rocklöv, J. (2016). Climate Change and Aedes Vectors: 21st Century Projections for Dengue Transmission in Europe. Ebiomedicine, 7, 267–277. https://doi.org/10.1016/j.ebiom.2016.03.046

Liu-Helmersson, J., Stenlund, H., Wilder‐Smith, A., & Rocklöv, J. (2014). Vectorial Capacity of Aedes Aegypti: Effects of Temperature and Implications for Global Dengue Epidemic Potential. Plos One, 9(3), e89783. https://doi.org/10.1371/journal.pone.0089783

Masrani, A. S., Husain, N. R. N., Musa, K. I., & Yasin, A. S. (2021). Prediction of Dengue Incidence in the Northeast Malaysia Based on Weather Data Using the Generalized Additive Model. Biomed Research International, 2021(1). https://doi.org/10.1155/2021/3540964

Mordecai, E. A., Caldwell, J. M., Grossman, M. K., Lippi, C. A., Johnson, L. R., Neira, M., Rohr, J. R., Ryan, S. J., Savage, V. M., Shocket, M. S., Sippy, R., Stewart‐Ibarra, A. M., Thomas, M. B., & Villena, O. C. (2019). Thermal Biology of Mosquito‐borne Disease. Ecology Letters, 22(10), 1690–1708. https://doi.org/10.1111/ele.13335

Muurlink, O., & Taylor‐Robinson, A. W. (2020). The ‘Lifecycle’ of Human Beings: A Call to Explore Vector-Borne Diseases From an Ecosystem Perspective. Infectious Diseases of Poverty, 9(1). https://doi.org/10.1186/s40249-020-00653-y

Olson, M. F., Juárez, J. G., Kraemer, M. U. G., Messina, J. P., & Hamer, G. L. (2021). Global Patterns of Aegyptism Without Arbovirus. Plos Neglected Tropical Diseases, 15(5), e0009397. https://doi.org/10.1371/journal.pntd.0009397

Osail, S. M., Sanny, S. I., & Zerin, T. (2024). A Narrative Review of Dengue Disaster in Bangladesh: Unprecedented Outbreak and Management Failure. Journal of Bacteriology and Virology, 54(2), 63–75. https://doi.org/10.4167/jbv.2024.54.2.063

Piovezan, R., Azevedo, T. S. d., Faria, E. R. S., Veroneze, R., Zuben, C. J. V, Zuben, F. J. V, & Sallum, M. A. M. (2022). Assessing the Effect of Aedes (Stegomyia) Aegypti (Linnaeus, 1762) Control Based on Machine Learning for Predicting the Spatiotemporal Distribution of Eggs in Ovitraps. Dialogues in Health, 1, 100003. https://doi.org/10.1016/j.dialog.2022.100003

Ponti, R. D., & Mutwil, M. (2021). Structural Landscape of the Complete Genomes of Dengue Virus Serotypes and Other Viral Hemorrhagic Fevers. BMC Genomics, 22(1). https://doi.org/10.1186/s12864-021-07638-7

Reza, S. B., Shoukhin, Md. M., Khan, S. A., & Dewan, S. M. R. (2024). Dengue Outbreak 2023 in Bangladesh: From a Local Concern to a Global Public Health Issue. Science Progress, 107(4). https://doi.org/10.1177/00368504241289462

Robert, M. A., Christofferson, R. C., Weber, P., & Wearing, H. J. (2019). Temperature Impacts on Dengue Emergence in the United States: Investigating the Role of Seasonality and Climate Change. Epidemics, 28, 100344. https://doi.org/10.1016/j.epidem.2019.05.003

Rodrigues, N. C. P., Lino, V. T. S., Daumas, R. P., Andrade, M. K. de N., O’Dwyer, G., Monteiro, D. L. M., Gerardi, A., Fernandes, G. H. B. V., Ramos, J. A. S., Ferreira, C. E. G., & Leite, I. d. C. (2016). Temporal and Spatial Evolution of Dengue Incidence in Brazil, 2001-2012. Plos One, 11(11), e0165945. https://doi.org/10.1371/journal.pone.0165945

Sargent, K., Mollard, J., Henley, S. F., & Bollasina, M. (2022). Predicting Transmission Suitability of Mosquito-Borne Diseases Under Climate Change to Underpin Decision Making. International Journal of Environmental Research and Public Health, 19(20), 13656. https://doi.org/10.3390/ijerph192013656

Sarma, D. K., Kumar, M., Nina, P. B., Balasubramani, K., Pramanik, M., Kutum, R., Shubham, S., Das, D., Kumawat, M., Verma, V. K., Dhurve, J., George, S. L., Balasundreshwaran, A., Prakash, A., & Tiwari, R. (2022). An Assessment of Remotely Sensed Environmental Variables on Dengue Epidemiology in Central India. Plos Neglected Tropical Diseases, 16(10), e0010859. https://doi.org/10.1371/journal.pntd.0010859

Semenza, J. C. (2015). Prototype Early Warning Systems for Vector-Borne Diseases in Europe. International Journal of Environmental Research and Public Health, 12(6), 6333–6351. https://doi.org/10.3390/ijerph120606333

Simões, T. C., Codeço, C. T., Nobre, A. A., & Eiras, Á. E. (2013). Modeling the Non-Stationary Climate Dependent Temporal Dynamics of Aedes Aegypti. Plos One, 8(8), e64773. https://doi.org/10.1371/journal.pone.0064773

Tavakoli, N. P., Tobin, E., Wong, S. J., Dupuis, A. P., Glasheen, B. M., Kramer, L. D., & Bernard, K. A. (2007). Identification of Dengue Virus in Respiratory Specimens From a Patient Who Had Recently Traveled From a Region Where Dengue Virus Infection Is Endemic. Journal of Clinical Microbiology, 45(5), 1523–1527. https://doi.org/10.1128/jcm.00209-07

Viana, D. V, & Ignotti, E. (2013). A Ocorrência Da Dengue E Variações Meteorológicas No Brasil: Revisão Sistemática. Revista Brasileira De Epidemiologia, 16(2), 240–256. https://doi.org/10.1590/s1415-790x2013000200002

Wang, X., Wang, X., & Cao, J. (2023). Environmental Factors Associated With Cryptosporidium and Giardia. Pathogens, 12(3), 420. https://doi.org/10.3390/pathogens12030420

Zellweger, R. M., Cano, J., Mangeas, M., Taglioni, F., Mercier, A., Despinoy, M., Menkès, C., Dupont‐Rouzeyrol, M., Nikolay, B., & Teurlai, M. (2017). Socioeconomic and Environmental Determinants of Dengue Transmission in an Urban Setting: An Ecological Study in Nouméa, New Caledonia. Plos Neglected Tropical Diseases, 11(4), e0005471. https://doi.org/10.1371/journal.pntd.0005471

Downloads

Published

2022-07-31

Issue

Section

Articles