Digital Wallets and Student Finances: Analyzing Behavioral Shifts in the Era of Cashless Payments

Authors

  • Aula Ahmad Hafidh Saiful Fikri Universitas Negeri Yogyakarta
  • Maimun Sholeh Universitas Negeri Yogyakarta
  • Nenden Susilowati Universitas Negeri Yogyakarta
  • Muhammad Roestam Afandi Universitas Negeri Yogyakarta
  • Indra Febrianto Universitas Negeri Yogyakarta

DOI:

https://doi.org/10.61194/ijmb.v3i4.898

Keywords:

Behavioral Economics, Digital Wallet, Financial Technology, TAM (Technology Acceptance Model), Financial Well-Being

Abstract

The development of financial technology (fintech) has brought significant changes to people's transaction patterns, particularly among university students, with the increasing use of digital wallets. This phenomenon is influenced by various factors, including digital literacy, financial attitude, herd behavior, and these factors impact on financial well-being. Therefore, this study aims to construct a structural model of digital wallet usage and how it impacts the financial well-being of students. This research uses a quantitative approach with the Structural Equation Modeling-Partial Least Squares (SEM-PLS) method to examine the relationships between variables. Data was collected through the distribution of questionnaires to students who actively use digital wallets. The results show that digital literacy has the largest total effect on financial well-being through two pathways: a direct influence and an indirect influence through the use of digital wallets. The total effect of digital literacy is high, making it the dominant predictor in the model. The research results show an R² value for the digital wallet usage variable of 0.508, which falls into the moderate category, while for the financial well-being variable it is 0.723, which falls into the high category. Digital literacy (LD) has established itself as the most fundamental determinant in the digital financial ecosystem. It serves not only as the primary driver of digital wallet (PDD) adoption by enhancing perceived usefulness and ease of use, consistent with the extended technology acceptance model, but also contributes directly and significantly to improving financial well-being (FWB) by facilitating access to financial information and products, aligning with the digital divide theory.

References

Agrawal, S. (2024). International Journal of Intelligent Automation and Computing Integrating Digital Wallets: Advancements in Contactless Payment Technologies (Issue ttps://orcid.org/0009-0000-4957, p. 5575).

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T DOI: https://doi.org/10.1016/0749-5978(91)90020-T

Amalia, J., Khofifah, S. N., Dwi, R., Wulandari, N., & Aini, S. N. (2023). Money Market And Capital Market Recent Developments. Investment Opportunities In The Digital Era, 1(ue 01)). https://serambi.org/index.php/assets/submissions

Amira, K., Rashid, A., Aziz, A., Rahim, A., Noor, S., & Aziz, A. (2023). The Practice of E-wallet Cashless Payment Among Youth After Movement Control Order (MCO) 2022: A Review According to Maqasid Syariah Hifz Mal. Borneo International Journal, N (Vol. 6, Issue 1). www.majmuah.com

Ardianti, R., & Megasari, R. (2021). Pengaruh intensitas informasi teman sebaya, literasi ekonomi, dan kontrol diri terhadap pembelian impulsif pada genbi Universitas Negeri Malang periode 2020-2021. Jurnal Ekonomi, Bisnis Dan Pendidikan, 1(8), 763–775. https://doi.org/10.17977/um066v1i82021p763-775 DOI: https://doi.org/10.17977/um066v1i82021p763-775

Cardona-Montoya, R. A. (2022). Digital and financial literacy as determinants of digital payments and personal finance. Economics Letters, 213, 110332. DOI: https://doi.org/10.1016/j.econlet.2022.110378

Cartwright, E. (2018). Behavioral Economics. In Routledge (Vol. 7). http://ci.nii.ac.jp/naid/110006807862/ DOI: https://doi.org/10.4324/9781315105079

Chen, Y. (2024). Business cycle and herding behavior in stock returns: theory and evidence. Financial Innovation, 10, 16. DOI: https://doi.org/10.1186/s40854-023-00540-z

Çoklar, A. N., Yaman, N. D., & Yurdakul, I. K. (2017). Information literacy and digital nativity as determinants of online information search strategies. Computers in Human Behavior, 70, 1–9. https://doi.org/10.1016/j.chb.2016.12.050 DOI: https://doi.org/10.1016/j.chb.2016.12.050

Diener, E. (1984). Subjective well-being. Psychological Bulletin, 95(3), 542–575. DOI: https://doi.org/10.1037//0033-2909.95.3.542

Hair, J. F., Black, W. C., Babin, B. J., Anderson, R. E., Black, W. C., & Anderson, R. E. (2018). Multivariate Data Analysis. https://doi.org/10.1002/9781119409137.ch4 DOI: https://doi.org/10.1002/9781119409137.ch4

Hair, J. F., Black, W. C., B.J.Babin, Rea., & RLTatham. (2010). Multivariate Data Analysis. https://www.drnishikantjha.com/papersCollection/Multivariate Data Analysis.pdf. hair.pdf

Hair JR, J. F., Black, william C., Babin, B. J., & Anderson, R. E. (2020). Multivariant Data Analysis. Polymers, 12(ue 12)). https://doi.org/10.3390/polym12123016 DOI: https://doi.org/10.3390/polym12123016

Henseler, J., & Sarstedt, M. (2013). Goodness-of-fit indices for partial least squares path modeling. Computational Statistics, 28(2), 565–580. https://doi.org/10.1007/s00180-012-0317-1 DOI: https://doi.org/10.1007/s00180-012-0317-1

Hong, J., Thakuriah, P., Mason, P., & Lido, C. (2020). The role of numeracy and financial literacy skills in the relationship between information and communication technology use and travel behaviour. Travel Behaviour and Society, 21(July), 257–264. https://doi.org/10.1016/j.tbs.2020.07.007 DOI: https://doi.org/10.1016/j.tbs.2020.07.007

Hossain, M. A., Islam, S., Rahman, M. M., & Arif, N. U. M. (2024). Impact Of Online Payment Systems On Customer Trust And Loyalty In E-Commerce Analyzing Security And Convenience. Academic Journal On Science, Technology, Engineering & Mathematics Education, 4(3), 1–15. https://doi.org/10.69593/ajsteme.v4i03.85 DOI: https://doi.org/10.69593/ajsteme.v4i03.85

Irawan, A. P., & Widjaja, I. (2021). Implementation of Technology Acceptance Model to Evaluate Reliability of the New Student Selection Application Development. Jurnal Komunikasi. https://doi.org/10.24912/jk.v13i2.13555 DOI: https://doi.org/10.24912/jk.v13i2.13555

Kong, S. T., & Loubere, N. (2021). Digitally down to the countryside: Fintech and rural development in China. The Journal of Development Studies, 57(10), 1739–1754. DOI: https://doi.org/10.1080/00220388.2021.1919631

Legate, A. E. , Hair Jr, J. F., Chretien, J. L. , & Risher, J. J. (2021). PLS‐SEM: Prediction‐oriented solutions for HRD researchers. Human Resource Development Quarterly. DOI: https://doi.org/10.1002/hrdq.21466

Li, X., & He, J. (2024). Evolutionary mechanism of green product certification behavior in cement enterprises: A perspective of herd behavior. Environmental Technology & Innovation, 33, 103508. https://doi.org/10.1016/j.eti.2023.103508 DOI: https://doi.org/10.1016/j.eti.2023.103508

Lusardi, A., & Mitchell, O. S. (2014). The economic importance of financial literacy: Theory and evidence. Journal of Economic Literature, 52(1), 5–44. DOI: https://doi.org/10.1257/jel.52.1.5

Morgan, P. J., Huang, B., & Trinh, L. Q. (2019). The need to promote digital financial literacy for the digital age. ADBI Working Paper Series, 947.

Murugiah, L., Ismail, R., Taib, H. M., Applanaidu, S. D., & Long, M. N. H. B. H. (2023). Children’s understanding of financial literacy and parents’ choice of financial knowledge learning methods in Malaysia. MethodsX, 11(September). https://doi.org/10.1016/j.mex.2023.102383 DOI: https://doi.org/10.1016/j.mex.2023.102383

Patel, P. C., & Wolfe, M. T. (2019). Money might not make you happy, but can happiness make you money? The value of leveraging subjective well-being to enhance financial well-being in self- employment. Journal of Business Venturing Insights, 12(April), 134. https://doi.org/10.1016/j.jbvi.2019.e00134 DOI: https://doi.org/10.1016/j.jbvi.2019.e00134

Pavlović-Höck, D. N. (2022). Herd behaviour along the consumer buying decision process - experimental study in the mobile communications industry. Digital Business, 2(1), 100018. https://doi.org/10.1016/j.digbus.2021.100018 DOI: https://doi.org/10.1016/j.digbus.2021.100018

Prawirasasra, K. P. (2018). Financial technology in Indonesia: disruptive or collaborative? Reports on Economics and Finance, 4(2), 83–90. https://doi.org/10.12988/ref.2018.818 DOI: https://doi.org/10.12988/ref.2018.818

Putri, K. N., & Mangifera, L. (2023). Analisis Peran Financial Capability terhadap Financial Well-Being dengan mediasi pengguna QRIS. Jurnal Riset Manajemen Dan Ekonomi (Jrime, 2(1), 286–305. https://doi.org/10.54066/jrime-itb.v2i1.1150 DOI: https://doi.org/10.54066/jrime-itb.v2i1.1150

Putriani, J. D. , & Hudaidah, H. (2021). Penerapan Pendidikan Indonesia Di Era Revolusi Industri 4.0. Edukatif : Jurnal Ilmu Pendidikan, 3(3), 830–838. DOI: https://doi.org/10.31004/edukatif.v3i3.407

Ramli, F. A. A., & Hamzah, M. I. (2021). Mobile payment and e-wallet adoption in emerging economies: A systematic literature review. Journal of Emerging Economies and Islamic Research, 9(2), 1. https://doi.org/10.24191/jeeir.v9i2.13617 DOI: https://doi.org/10.24191/jeeir.v9i2.13617

Rithmaya, C. L., Ardianto, H., & Sistiyarini, E. (2024). Gen Z And The Future Of Banking: An Analysis Of Digital Banking Adoption. Jurnal Manajemen Dan Kewirausahaan, 26(1), 64–78. https://doi.org/10.9744/jmk.26.1.64-78 DOI: https://doi.org/10.9744/jmk.26.1.64-78

Shen, Y., Huang, C. Y., Chu, C. H., & Liao, H. C. (2018). Virtual relationship and social influence on mobile app purchase behavior. Electronic Commerce Research, 18(2), 317–338.

Teng, S., & Khong, K. W. (2021). Examining actual consumer usage of E-wallet: A case study of big data analytics. Computers in Human Behavior, 121. https://doi.org/10.1016/j.chb.2021.106778 DOI: https://doi.org/10.1016/j.chb.2021.106778

Thaller, R. H. (1906). Misbehaving: The Making Behavioral Economics.

Tian, Y., Chan, T. J., Suki, N. M., & Kasim, M. A. (2023). Moderating Role of Perceived Trust and Perceived Service Quality on Consumers’ Use Behavior of Alipay e-wallet System: The Perspectives of Technology Acceptance Model and Theory of Planned Behavior. Human Behavior and Emerging Technologies. https://doi.org/10.1155/2023/5276406 DOI: https://doi.org/10.1155/2023/5276406

Ud, M. , Ullah, I. , 2¥, K. , Khan, A. , Khush, †, & Khan, D. (2024). Payment Behavior Dynamics Using Mental Accounting Theory: The Moderating Effect of Self-Control. South Asian Journal of Management Sciences, 18(2), 181–200. https://doi.org/10.21621/sajms.2024182.05 DOI: https://doi.org/10.21621/sajms.2024182.05

Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. DOI: https://doi.org/10.1287/mnsc.46.2.186.11926

Wahyono, H., Narmaditya, B. S., Wibowo, A., & Kustiandi, J. (2021). Irrationality and economic morality of SMEs’ behavior during the Covid-19 pandemic: lesson from Indonesia. Heliyon, 7(7), 7400. https://doi.org/10.1016/j.heliyon.2021.e07400 DOI: https://doi.org/10.1016/j.heliyon.2021.e07400

Xiao, J. J., Chen, C., & Sun, L. (2014). Age differences in consumer financial capability. International.

Zhang, Z., Cheng, Z., Gu, T., & Zhang, Y. (2024). Determinants of users’ unverified information sharing on social media platforms: A herding behavior perspective. Acta Psychologica, 248, 104345. https://doi.org/10.1016/j.actpsy.2024.104345 DOI: https://doi.org/10.1016/j.actpsy.2024.104345

Zhi Ern, N., Lee, K., Ming, Y., Loong, L. C., & Pick Soon, L. (2024). Exploring Factors Influencing The Intention to Use E-Wallets for Investment Purposes (Vol. 3, Issue 2). https://doi.org/10.47841/icorad.v3i2.292

Downloads

Published

2025-11-19

How to Cite

Ahmad Hafidh Saiful Fikri, A., Sholeh, M., Susilowati, N., Roestam Afandi, M., & Febrianto, I. (2025). Digital Wallets and Student Finances: Analyzing Behavioral Shifts in the Era of Cashless Payments. Sinergi International Journal of Management and Business, 3(4), 254–268. https://doi.org/10.61194/ijmb.v3i4.898