Integration of Artificial Intelligence in Geography Learning: Challenges and Opportunities

Authors

  • Heinrich Rakuasa Universitas Pattimura

DOI:

https://doi.org/10.61194/education.v1i2.71

Keywords:

Artificial Intelligence, Geography Learning, Geography Education

Abstract

This research discusses the potential and challenges of integrating Artificial Intelligence (AI) in geography learning. By considering the fundamentals of AI and the role of geography in the era of globalization, this research outlines the benefits of AI in geography learning through interactive visualization and personalization of learning. However, challenges such as equitable access to technology and teacher training are major concerns in the application of AI. The research uses descriptive method with literature review which involves collecting, analyzing, and explaining the information in the literature relevant to the integration of artificial intelligence (AI) in Geography learning.  In addition, this study highlights the opportunities of AI in geographic data analysis and addressing global challenges such as climate change. The profound implications of AI integration in geography learning are also discussed, given its impact on education and society. This research provides a holistic picture of the intersection of AI and geography, encouraging a better understanding of its potential and limitations. It is hoped that this research will provide guidance for educational practitioners and researchers to optimize the potential of AI in geography teaching, taking into account the challenges to be overcome and the opportunities to be exploited.

References

Abdul Muin, & H. R. (2023). Pemetaan Kerentanan Kebakaran Hutan di Pulau Buru, Provinsi Maluku Berdasarkan Fire Hotspot. INSOLOGI: Jurnal Sains Dan Teknologi, 2(4), 675–683. https://doi.org/https://doi.org/10.55123/insologi.v2i4.2256

Alam, A. (2022). Employing Adaptive Learning and Intelligent Tutoring Robots for Virtual Classrooms and Smart Campuses: Reforming Education in the Age of Artificial Intelligence (pp. 395–406). https://doi.org/10.1007/978-981-19-2980-9_32

Albahbah, M., Kıvrak, S., & Arslan, G. (2021). Application areas of augmented reality and virtual reality in construction project management: A scoping review. Journal of Construction Engineering, Management & Innovation, 4(3). https://doi.org/10.31462/jcemi.2021.03151172

Chang, C.-H., & Kidman, G. (2023). The rise of generative artificial intelligence (AI) language models - challenges and opportunities for geographical and environmental education. International Research in Geographical and Environmental Education, 32(2), 85–89. https://doi.org/10.1080/10382046.2023.2194036

Chen, M., Claramunt, C., Çöltekin, A., Liu, X., Peng, P., Robinson, A. C., Wang, D., Strobl, J., Wilson, J. P., Batty, M., Kwan, M.-P., Lotfian, M., Golay, F., Joost, S., Ingensand, J., Senousi, A. M., Cheng, T., Bandrova, T., Konecny, M., … Lü, G. (2023). Artificial intelligence and visual analytics in geographical space and cyberspace: Research opportunities and challenges. Earth-Science Reviews, 241, 104438. https://doi.org/10.1016/j.earscirev.2023.104438

Chorley, R. J. (Ed.). (2019). Directions in Geography. Routledge. https://doi.org/10.4324/9780429273292

Çifçi, T., & Dikmenli, Y. (2019). Why Geography Learning: Candidate Teachers’ Views for Geography. Review of International Geographical Education Online. https://doi.org/10.33403/rigeo.672979

Cope, B., Kalantzis, M., & Searsmith, D. (2021). Artificial intelligence for education: Knowledge and its assessment in AI-enabled learning ecologies. Educational Philosophy and Theory, 53(12), 1229–1245. https://doi.org/10.1080/00131857.2020.1728732

DeMers, M. N. (2016). Geospatial Technology in Geography Education. The Geography Teacher, 13(1), 23–25. https://doi.org/10.1080/19338341.2016.1151722

Guan, C., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134–147. https://doi.org/10.1016/j.ijis.2020.09.001

Hehanussa, F. S., Sumunar, D. R. S., & Rakuasa, H. (2023). Pemanfaatan Geogle Earth Engine Untuk Identifikasi Perubahan Suhu Permukaan Daratan Kabupaten Buru Selatan Berbasis Cloud Computing. Gudang Jurnal Multidisiplin Ilmu, 1(1), 37–45.

Heinrich Rakuasa, & P. C. L. (2023). Monitoring Urban Sprawl in Ambon City Using Google Earth Engine. MULTIPLE: Journal of Global and Multidisciplinary, 1(2), 88–100.

Huang, J., Saleh, S., & Liu, Y. (2021). A Review on Artificial Intelligence in Education. Academic Journal of Interdisciplinary Studies, 10(3), 206. https://doi.org/10.36941/ajis-2021-0077

Janowicz, K., Gao, S., McKenzie, G., Hu, Y., & Bhaduri, B. (2020). GeoAI: spatially explicit artificial intelligence techniques for geographic knowledge discovery and beyond. International Journal of Geographical Information Science, 34(4), 625–636. https://doi.org/10.1080/13658816.2019.1684500

Knox, J. (2020). Artificial intelligence and education in China. Learning, Media and Technology, 45(3), 298–311. https://doi.org/10.1080/17439884.2020.1754236

Lambert, D., Solem, M., & Tani, S. (2015). Achieving Human Potential Through Geography Education: A Capabilities Approach to Curriculum Making in Schools. Annals of the Association of American Geographers, 105(4), 723–735. https://doi.org/10.1080/00045608.2015.1022128

Latue, P. C., Rakuasa, H., Somae, G., & Muin, A. (2023). Analisis Perubahan Suhu Permukaan Daratan di Kabupaten Seram Bagian Barat Menggunakan Platform Berbasis Cloud Google Earth Engine. Sudo Jurnal Teknik Informatika, 2(2), 45–51. https://doi.org/https://doi.org/10.56211/sudo.v2i2.261

Lavallin, A., & Downs, J. A. (2021). Machine learning in geography–Past, present, and future. Geography Compass, 15(5). https://doi.org/10.1111/gec3.12563

Li, W., & Hsu, C.-Y. (2022). GeoAI for Large-Scale Image Analysis and Machine Vision: Recent Progress of Artificial Intelligence in Geography. ISPRS International Journal of Geo-Information, 11(7), 385. https://doi.org/10.3390/ijgi11070385

Manakane, S. E., Latue, P. C., Somae, G., & Rakuasa, H. (2023). Flood Risk Modeling in Buru Island, Maluku Province, Indonesia using Google Earth Engine: Pemodelan Risiko Banjir di Pulau Buru, Provinsi Maluku, Indonesia dengan menggunakan Mesin Google Earth. MULTIPLE: Journal of Global and Multidisciplinary, 1(2), 80–87.

Muin, A., & Rakuasa, H. (2023). Pemanfaat Geographic Artificial Intelligence (Geo-AI) Untuk Identifikasi Daerah Rawan Banjir Di Kota Ambon. Gudang Jurnal Multidisiplin Ilmu, 1(2), 58-63. https://doi.org/https://doi.org/10.59435/gjmi.v1i2.24

Papanastasiou, G., Drigas, A., Skianis, C., Lytras, M., & Papanastasiou, E. (2019). Virtual and augmented reality effects on K-12, higher and tertiary education students’ twenty-first century skills. Virtual Reality, 23(4), 425–436. https://doi.org/10.1007/s10055-018-0363-2

Philia Christi Latue, H. R. (2023). Analisis Perubahan Suhu Permukaan Daratan di Kecamatan Ternate Tengah Menggunakan Google Earth Engine Berbasis Cloud Computing. E- JOINT ( Electronica and Electrical Journal of Innovation Technology), 4(1), 16–20. https://doi.org/https://doi.org/10.35970/e-joint.v4i1.1901

Radcliffe, S. A. (2017). Decolonising geographical knowledges. Transactions of the Institute of British Geographers, 42(3), 329–333. https://doi.org/10.1111/tran.12195

Rakuasa, H. (2022). ANALISIS SPASIAL TEMPORAL SUHU PERMUKAAN DARATAN/ LAND SURFACE TEMPERATURE (LST) KOTA AMBON BERBASIS CLOUD COMPUTING: GOOGLE EARTH ENGINE. Jurnal Ilmiah Informatika Komputer, 27(3), 194–205. https://doi.org/10.35760/ik.2022.v27i3.7101

Simon, J. P. (2019). Artificial intelligence: scope, players, markets and geography. Digital Policy, Regulation and Governance, 21(3), 208–237. https://doi.org/10.1108/DPRG-08-2018-0039

Susan E Manakane, Philia Christi Latue, Glendy Somae, H. R. (2023). The Role of Geography Research in Supporting Sustainable Development in Ambon City, Indonesia: A Review. Sinergi International Journal of Economics, 1(2), 64–75. https://doi.org/https://doi.org/10.61194/economics.v1i2.67

Toom, A., Tiilikainen, M., Heikonen, L., Leijen, Ä., Mena, J., & Husu, J. (2019). Teacher candidate learning of action-oriented knowledge from triggering incidents in teaching practice. Teachers and Teaching, 25(5), 536–552. https://doi.org/10.1080/13540602.2019.1652162

Zawacki-Richter, O., Marín, V. I., Bond, M., & Gouverneur, F. (2019). Systematic review of research on artificial intelligence applications in higher education – where are the educators? International Journal of Educational Technology in Higher Education, 16(1), 39. https://doi.org/10.1186/s41239-019-0171-0

Zhai, X., Chu, X., Chai, C. S., Jong, M. S. Y., Istenic, A., Spector, M., Liu, J.-B., Yuan, J., & Li, Y. (2021). A Review of Artificial Intelligence (AI) in Education from 2010 to 2020. Complexity, 2021, 8812542. https://doi.org/10.1155/2021/8812542

Downloads

Published

2023-08-31

Issue

Section

Articles